ST. BERNARD'S PRIMARY SCHOOL AND NURSERY UNIT
GLENGORMLEY

Numeracy Fact Booklet Year 6 and 7

Topic

Maths Language
Page Numbers
3
Square and Cube Numbers 4
Multiples \& Factors
4
Prime Numbers 5
Venn Diagrams 6
Averages
7
Connecting Numbers 8
Lines
2-D Shapes
3-D Shapes
10-13
Area
14-16
Area 17
Perimeter 18
Volume
Fractions, Decimals \& Percentages
Time
Angles
Scale
Function Machines
19

Algebra
Data Handling
20-24
25-26

Long Multiplication
34-35
Long Division 37
Negative Numbers
38

Maths Language

In maths there are many ways of saying the same thing. It is important to learn these all.

$+$	-
	subtract minus how many less find the difference decrease take away deduct
	\bigcirc
multiply by times lots of product *calculate the area* *calculate the volume*	divide share split into equal groups how many times goes into

Inverse operation is a clever self-checking strategy!

Operation	Inverse
+	-
-	\div
X	\div
\div	X
X^{2}	\sqrt{x}

* DON'T FORGET

tand- are simply the opposite of each other.
If you know $24+\square=50$
then it follows that $50-24$ will give the missing answer.
In the same way, X and \div are also opposites.

$$
\text { If you know } \square \times 6=138
$$

then it could be easier to think $6 \frac{23}{1318}$ to calculate the answer.

Decimal Place Value Chart											
				$\begin{aligned} & \text { ñ } \\ & \text { 륨 } \\ & \text { 도 } \\ & \end{aligned}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { N }}{\substack{0}} \stackrel{\substack{ \pm \pm}}{ \pm}$		3 0 0 0		hundred thousandths	
M	HTh	TTh	Th	H	T	0 Ot	h	th	tth	hth	m
						-					
						-					

6/1 Round whole numbers

Example 1-Round 342679 to the nearest
10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 2

4 or less? YES

- leave 'round off digit' unchanged
- Replace following digits with zeros

ANSWER - 340000

Example 2- Round 345679 to the nearest 10000

- Step 1 - Find the 'round-off digit' - 4
- Step 2 - Move one digit to the right - 5

5 or more? YES

- add one to 'round off digit'
- Replace following digits with zeros

MUMTPMGANON

ix

$$
\begin{aligned}
& 1 \times 1=1 \\
& 1 \times 2=2 \\
& 1 \times 3=3 \\
& 1 \times 4=4 \\
& 1 \times 5=5 \\
& 1 \times 6=6 \\
& 1 \times 7=7 \\
& 1 \times 8=8 \\
& 1 \times 9=9 \\
& 1 \times 10=10 \\
& 1 \times 11=11 \\
& 1 \times 12=12
\end{aligned}
$$

$2 x$

$2 \times 1=2$
$2 \times 2=4$
$2 \times 3=6$
$2 \times 4=8$
$2 \times 5=10$
$2 \times 6=12$
$2 \times 7=14$
$2 \times 8=16$
$2 \times 9=18$
$2 \times 10=20$
$2 \times 11=22$
$2 \times 12=24$

(ax)

$$
\begin{aligned}
& 3 \times 1=3 \\
& 3 \times 2=6 \\
& 3 \times 3=9 \\
& 3 \times 4=12 \\
& 3 \times 5=15 \\
& 3 \times 6=18 \\
& 3 \times 7=21 \\
& 3 \times 8=24 \\
& 3 \times 9=27 \\
& 3 \times 10=30 \\
& 3 \times 11=33 \\
& 3 \times 12=36
\end{aligned}
$$

(4x)

$4 \times 1=4$
$4 \times 2=8$
$4 \times 3=12$
$4 \times 4=16$
$4 \times 5=20$
$4 \times 6=24$
$4 \times 7=28$
$4 \times 8=32$
$4 \times 9=36$
$4 \times 10=40$
$4 \times 11=44$
$4 \times 12=48$

8x
$7 \times 1=7$
$7 \times 2=14$
$7 \times 3=21$
$7 \times 4=23$
$7 \times 5=35$
$7 \times 6=42$
$7 \times 7=49$
$7 \times 8=56$
$7 \times 9=63$
$7 \times 10=70$
$7 \times 11=7$
$7 \times 12=84$
$8 \times 1=8$
$8 \times 2=16$
$8 \times 3=24$
$8 \times 4=32$
$8 \times 5=40$
$8 \times 6=48$
$8 \times 7=56$
$8 \times 8=64$
$8 \times 9=72$
$8 \times 10=80$
$8 \times 11=88$
$8 \times 12=96$
(ox)
(iix)
$11 \times 1=11$
$11 \times 2=22$
II $\times 3=33$
$11 \times 4=44$
$11 \times 5=55$
$11 \times 6=66$
$11 \times 7=7$
$11 \times 8=88$
$11 \times 9=99$
$11 \times 10=110$
$11 \times 11=121$
11 $\times 12=132$

12x
$12 \times 1=12$
$12 \times 2=24$
$12 \times 3=36$
$12 \times 4=48$
$12 \times 5=60$
$12 \times 6=72$
$12 \times 7=84$
$12 \times 8=96$
$12 \times 9=108$
$12 \times 10=120$
$12 \times 11=132$
$12 \times 12=144$

ONE

$1 \div 1=1$
$2 \div 1=2$
$3 \div 1=3$ $4 \div 1=4$
$5 \div 1=5$
$6 \div 1=6$
$7 \div 1=7$
$8 \div 1=8$
$9 \div 1=9$
$10 \div 1=10$
$11 \div 1=11$
$12 \div 1=12$

TWO
$2 \div 2=1$
$4 \div 2=2$
$6 \div 2=3$
$8 \div 2=4$
$10 \div 2=5$
$12 \div 2=6$
$14 \div 2=7$
$16 \div 2=8$
$18 \div 2=9$
$20 \div 2=10$
$22 \div 2=11$
$24 \div 2=12$
$1 H R=Z$
$3 \div 3=1$
$6 \div 3=2$
$9 \div 3=3$
$12 \div 3=4$
$15 \div 3=5$
$18 \div 3=6$
$21 \div 3=7$
$24 \div 3=8$
$27 \div 3=9$
$30 \div 3=10$
$33 \div 3=11$
$36 \div 3=12$
$F O U R$
$4 \div 4=1$
$8 \div 4=2$
$12 \div 4=3$
$16 \div 4=4$
$20 \div 4=5$
$24 \div 4=6$
$28 \div 4=7$
$32 \div 4=8$
$36 \div 4=9$
$40 \div 4=10$
$44 \div 4=11$
$48 \div 4=12$

$F I V=$	$S I X$
$5 \div 5=1$	$6 \div 6=1$
$10 \div 5=2$	$12 \div 6=2$
$15 \div 5=3$	$18 \div 6=3$
$20 \div 5=4$	$24 \div 6=4$
$25 \div 5=5$	$30 \div 6=5$
$30 \div 5=6$	$36 \div 6=6$
$35 \div 5=7$	$42 \div 6=7$
$40 \div 5=8$	$48 \div 6=8$
$45 \div 5=9$	$54 \div 6=9$
$50 \div 5=10$	$60 \div 6=10$
$55 \div 5=11$	$66 \div 6=11$
$60 \div 5=12$	$72 \div 6=12$

SEVEN

$7 \div 7=1$
$14 \div 7=2$
$21 \div 7=3$
$28 \div 7=4$
$35 \div 7=5$
$42 \div 7=6$
$49 \div 7=7$
$56 \div 7=8$
$63 \div 7=9$
$70 \div 7=10$
$77 \div 7=11$
$84 \div 7=12$
EICHT
$8 \div 8=1$
$16 \div 8=2$
$24 \div 8=3$
$32 \div 8=4$
$40 \div 8=5$
$48 \div 8=6$
$56 \div 8=7$
$64 \div 8=8$
$72 \div 8=9$
$80 \div 8=10$
$88 \div 8=11$ $96 \div 8=12$

$N N=$	$T H N$
$9 \div 9=1$	$10 \div 10=1$
$18 \div 9=2$	$20 \div 10=2$
$27 \div 9=3$	$30 \div 10=3$
$36 \div 9=4$	$40 \div 10=4$
$45 \div 9=5$	$50 \div 10=5$
$54 \div 9=6$	$60 \div 10=6$
$63 \div 9=7$	$70 \div 10=7$
$72 \div 9=8$	$80 \div 10=8$
$81 \div 9=9$	$90 \div 10=9$
$90 \div 9=10$	$100 \div 10=10$
$99 \div 9=11$	$110 \div 10=11$
$108 \div 9=12$	$120 \div 10=12$

TEN

$$
10 \div 10=1
$$

$$
20 \div 10=2
$$

$$
30 \div 10=3
$$

$$
40 \div 10=4
$$

$$
50 \div 10=5
$$

$$
60 \div 10=6
$$

$$
70 \div 10=7
$$

$$
80 \div 10=8
$$

$$
90 \div 10=9
$$

$$
100 \div 10=10
$$

$$
110 \div 10=11
$$

$$
120 \div 10=12
$$

$E L=V=N$	$T W=L V=$
$11 \div 11=1$	$12 \div 12=1$
$22 \div 11=2$	$24 \div 12=2$
$33 \div 11=3$	$36 \div 12=3$
$44 \div 11=4$	$48 \div 12=4$
$55 \div 11=5$	$60 \div 12=5$
$66 \div 11=6$	$72 \div 12=6$
$77 \div 11=7$	$84 \div 12=7$
$88 \div 11=8$	$96 \div 12=8$
$99 \div 11=9$	$108 \div 12=9$
$110 \div 11=10$	$120 \div 12=10$
$121 \div 11=11$	$132 \div 12=11$
$132 \div 11=12$	$144 \div 12=12$

Square Numbers and Cube Numbers

The following table shows all the square and cube numbers you should know quickly.

	Square Numbers		Cube Numbers	
1	1×1	1	$1 \times 1 \times 1$	1
2	2×2	4	$2 \times 2 \times 2$	8
3	3×3	9	$3 \times 3 \times 3$	27
4	4×4	16	$4 \times 4 \times 4$	64
5	5×5	25	$5 \times 5 \times 5$	125
6	6×6	36	$6 \times 6 \times 6$	216
7	7×7	49	$7 \times 7 \times 7$	343
8	8×8	64	$8 \times 8 \times 8$	512
9	9×9	81	$9 \times 9 \times 9$	729
10	10×10	100	$10 \times 10 \times 10$	1000
11	11×11	121		
12	12×12	144		

Multiples and Factors

- A multiple is a number multiplied. Some multiples of 10 are 20, 30, 40,50 because you multiply 10 by another number to make the larger number.
- A factor is a number that will divide equally into a bigger number. 2 and 5 are factors of 10 .

Factors, multiples \& primes

- FACTORS are numbers that divide exactly into another number.

The common factors of $12 \& 18$ are: $1,2,3,6$, The Highest Common Factor is: 6

- PRIME NUMBERS have only TWO factors e.g. Factors of 7 are:

1	7

Factors of 13 are $1 \quad 13$

So 7 and 13 are both prime numbers

- MULTIPLES are the times table answers e.g. Multiples of 5 are: Multiples of 4 are:

5	10	15	20	25	4	8	12	16

The Lowest Common Multiple of 5 and 4 is: 20

Prime Numbers

A prime number can be divided evenly only by 1 or itself and it must be a whole number greater than 1.

Remember the rule: It's easy to check if a number under 100 is a prime number. You only have to work out if it divides evenly by $2,3,5$ or 7 .

Do these 3 steps:

- Step 1 - all x2 are even numbers - (0,2,4,6,8 units)
- Step 2- all x5 numbers end in 0 or 5
- Step 3 - check if the number divides evenly by 3 or 7 . If not, then it's a prime number.

Find all the Prime Numbers less than 100.

- Cross out 1
- Cross out all numbers that $\div 2, \div 3, \div 5, \div 7$
- All numbers left are prime numbers

	3	25			\%
11	13				
2	28				
31	38	5			
41	43	4			
55	55^{53}	52	S		
61	訹	\$ ${ }^{5}$	86		
	2				

Squares, Cubes and Primes in Venn Diagrams

- Don't forget:
- It is impossible for a prime number to go in any section other than the one shaded in grey above.
- 64 is the ONLY number that will ever go in the area shown above.
- If a number does not fit in any of the circles, then it should be written outside the circles but inside the box. Look at the examples above -18 and 33 .

Triangular Numbers

A number that can make a triangular dot pattern.
Example: 1, 3, 6, 10 and 15 are triangular numbers.

$1,3,6,10,15,21,28,36,45 \ldots$

Divisibility Rules

Anumberis divisible by...	Divisible	NotDivisible
2 ifthe last digitis even ($0,2,4,6,0,88)$.	3.978	4.975
3 ithe sum ofthe digitsis divisibe by 3 .	315	139
4 ithe asttwodigitisomm a number divisble by4.	8.512	7,518
5 itthe astidigitis 0 or 5 .	14,975	10,978
6 itthe numberis divisble by both 2 and 3	48	20
9 ithe sum ofthe digitsis divisibe by 9 .	711	93
10 itthe lastidigitis 0 .	15,900	10,536

6/2 Negative numbers

$2>-2 \longrightarrow$ We say 2 is bigger than -2
$-2<2 \rightarrow$ We say -2 is less than 2

The difference between 2 and $-2=4$ (see number line)

Remember the rules:

- When subtracting go down the number line
- When adding go up the number line
- $8+-2$ is the same as $8-2=6$
- $8-+2$ is the same as $8-2=6$
- $8--2$ is the same as $8+2=10$

Fractions, Decimals and Percentages

- The word percent simply means 'out of 100 '
- A percentage is just like a fraction.
- This is the symbol for percent - \%
- We can write 1% like this or as a fraction like this $1 / 100$
- A decimal is another way of writing a fraction or a percentage.
- Decimals and fractions are always worth less than 1.

Percent	Decimal	Fraction	Lowest Terms
1\%	0.01	1/100	
5\%	0.05	5/100	$1 / 20$
10\%	0.1	10/100	1/10
121/2\%	0.125	122/2/100	1/8
20\%	0.2	20/100	1/5
25\%	0.25	25/100	$1 / 4$
30\%	0.3	30/100	$3 / 10$
$33^{1 / 3} \%$	0.333...	331/3/100	1/3
40\%	0.4	40/100	2/5
50\%	0.5	50/100	1/2
60\%	0.6	60/100	$3 / 5$
70\%	0.7	70/100	7/10
75\%	0.75	75/100	$3 / 4$
80\%	0.8	80/100	4/5
90\%	0.9	90/100	$9 / 10$
99\%	0.99	99/100	99/100
100\%	1	100/100	

- Always remember to simplify fractions to the lowest possible terms.

How to simplify fractions

There are two ways to simplify a fraction:

Method 1

Try dividing both the top and bottom of the fraction until you can't go any further (try dividing by 2,3,5,7,...etc).

Example: Simplify the fraction ${ }^{24 / 108}$:

Method 2

Divide both the top and bottom of the fraction by the Greatest Common Factor, (you have to work it out first!).

Example: Simplify the fraction $8 / 12$:

1. The largest number that goes exactly into both 8 and 12 is 4 , so the Greatest Common Factor is 4.
2. Divide both top and bottom by 4 :

$\div 4$
And the answer is: ${ }^{\mathbf{2} / 3}$

Simplifying Fractions

Points to remember

- If both numbers in the fraction end with a ' 0 ' then 10 will divide into both of them e.g. $10 / 100 \longrightarrow 1 / 10$
- If both numbers end with a‘5' then 5 will divide into them.
e.g. $5 / 25 \longrightarrow 1 / 5$
- If both numbers end with a ' 0 ' and a ' 5 ' then 5 will divide into them.
e.g. $15 / 100 \longrightarrow 3 / 20$
- If both numbers are even then 2 will divide into them.

$$
\text { e.g. } \quad 16 / 24 \longrightarrow 8 / 12 \longrightarrow 4 / 6 \longrightarrow 2 / 3
$$

- Also remember your number facts from your times tables for more unusual fractions.
e.g.
$12 / 30 \xrightarrow[\text { (both divide by } 6 \text {) } \longrightarrow 2 / 15]{ }$

Now practise bringing these fractions down to their lowest terms:
$75 / 100$
$18 / 100$
$25 / 100$
$10 / 100$
62/100
$50 / 100$
$20 / 100$
$85 / 100$
$40 / 100$
$45 / 100$

Changing an improper fraction to a mixed froction

An improper fraction is a top heary fraction.
E.g. 15

7
If a froction is top heary it means it is more than one whole. Remember if the numerator is the same os the denominator then the fraction is whole.
So, $\underline{15}=\underline{7}+\underline{7}+\underline{1}=2$ whole and $!$
7777
7

Changing a mixed fraction to an improper fraction

A mixed fraction contains some whole numbers and froctions.

E.g. 1 ?
 5

To change this into an improper fraction we have to multiply the denominator by the whole number and odd the answer so the numerator.

$$
\begin{gathered}
\text { So, } 1 \frac{2}{5}=1 \times 5=5+2=7 \\
5
\end{gathered}
$$

$50,1 \frac{2}{5}=\frac{7}{5}$
e.g. Find 75% of 256.

- Step 1 - look at the percentage
- Step 2 - change it to a fraction
- Step 3 - check the fraction is in its lowest terms and if not then simplify it.
- Step 4 - when the fraction is in its lowest terms, divide the number by the bottom part of your fraction.
- Step 5 - finally use the answer you have just got and multiply it by the top part of your fraction.

The answer you have just worked out is the percent of your starting number.

SO: to find 75% of 256

- Step 1 - 75\%
- Step 2 - 75/100
- Step $3-3 / 4$
- Step $4 - 4 \longdiv { 2 5 6 }$
- Step 5 - 64 $\times 3$
192

So now you have worked out that 75% of 256 is 192

Percentages - Shading Squares

Example: Draw a shape made up of 60 squares and shade in 75%.

75% is $3 / 4$

- We find $3 / 4$ of 60
- $60 \div 4=15$
- $15 \times 3=45$
- So 75% of 60 is 45
- We shade 45 squares
- How many squares are shaded? $=45$
- How many squares are unshaded? $=15$
- What $\%$ of the shape is shaded? $=75 \%$
- What $\%$ of the shape is unshaded? $=25 \%$

Decimal Place Value

PA. Aspewsmment Anchor A.1.2.2

Multiplying and Dividing by 10 and 100

$0.9 \times 10=9$

Hundreds	Tens	Units	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
		0	9		

Multiplying by 10 = move digits one places to the left

$$
3.901 \times 100=390.1
$$

Hundreds	Tens	Units	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
		3	9	0	1
3	9	0	1		

Multiplying by 100 = move digits two places to the left

$19 \div 100=0.19$

Hundreds	Tens	Units	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
	1	9			
		0	1	-9	

Dividing by $\mathbf{1 0}=$ move digits one place to the right Dividing by 100 = move digits two places to the right

Rounding Decimals

Rounding Decimals Poster

Round to the nearest tenths

56

L. Underline the numeral in the place value that you are rounding to.
2. Look at the numeral to the right of the underlined numeral. If it is a 5 or larger, round the underlined numeral up. If it is a 4 or lower, leave the underined numeral as is.
3. Change every numeral to the right of the underlined numeral to a 0 .

Ordering Decimals

comparing \& ordering

 four- square note page

STP 1 : Stock the numbers beng corparad Lnoup the decma ponts	STiP2:Adtzeroc so that esch rumber has the same rumber of docmad dats
4.8	4.800
4.826	4.826
4.08	4.080
4.006	4.006
STEP 3 Compore each ploco value cnés by one. If a rurber at the tande, move to the next place	STrply Order the numbers frem lost 10 gratest or gratest to last Lhero, they are arderad frem
1 111	bayt 10 goxest
4.800	4.006, 4.08, 4.800, 4.82
4.826	Demova the zaror you
4.080	provorsy assod.
4.006	4.006. 4.08, 48. 4.826

Averages

- To find the average of a set of numbers, simply add up the numbers and divide by the amount of numbers you have added.
e.g. Find the average of these 5 numbers: $38 \quad 27 \quad 51 \quad 16 \quad 43$
$38+27+51+16+43=175$
Now divide 175 by 5 (as you had 5 numbers at the start.)
The average is 35
- To find a missing number from a list of numbers when you know the average you need to first work out the total then subtract the numbers you already know.

The mean

```
The mean is usually known as the average.
The mean is not a value from the original
list.
It is a typical value of a set of data
Mean = total of measures }\div\mathrm{ no. of measures
```

```
e.9.- Find mean speed of 6 cars travelling on
```

e.9.- Find mean speed of 6 cars travelling on
a road
a road
Car 1-66mph
Car 1-66mph
Car $2-57 \mathrm{mph}$
Car $2-57 \mathrm{mph}$
Car 3-71mph
Car 3-71mph
Car 4-54mph
Car 4-54mph
Car 5-69mph
Car 5-69mph
Car 6-58mph
Car 6-58mph
Mean $=\underline{66+57+71+54+69+58}$
Mean $=\underline{66+57+71+54+69+58}$
$=\underline{375}$
$=\underline{375}$
6
6
$=62.5 \mathrm{mph}$
$=62.5 \mathrm{mph}$
Mean average speed was 62.5 mph

```
Mean average speed was 62.5 mph
```

e.g 5 children measure their height then calculate their average height. Their average height is 143 cm .

Tim is 142 cm tall Holly is 137 cm tall How tall is Andrew?
To answer this question, you need to find out how tall the 5 children are altogether, then subtract the heights you already know.
$143 \mathrm{~cm} \times 5=715 \mathrm{~cm}$.
Now subtract the heights of the children that you already know ($142 \mathrm{~cm}, 153 \mathrm{~cm}, 137 \mathrm{~cm}$ and 144 cm) and you will be left with Andrew's height -139 cm .

Measure Facts

Weight Facts

There are 1000 grams in 1 kilogram.
1 g is the same as $1 / 1000$ of 1 kg .
10 g is the same as $1 / 100$ of 1 kg .
100 g is the same as $1 / 10$ of 1 kg .
250 g is the same as $1 / 4$ of 1 kg .
500 g is the same as $1 / 2$ of 1 kg .
750 g is the same as $3 / 4$ of 1 kg .

To change g into kg you need to divide the number of g by 1000 .
e.g. $\quad 2000 \mathrm{~g}=2 \mathrm{~kg}$

$$
4500 \mathrm{~g}=4.5 \mathrm{~kg}
$$

Length Facts

There are 1000 metres in 1 kilometre. 1 m is the same as $1 / 1000$ of 1 km . 10 m is the same as $1 / 100$ of 1 km . 100 m is the same as $1 / 100 \mathrm{f} 1 \mathrm{~km}$. 250 m is the same as $1 / 4$ of 1 km . 500 m is the same as $1 / 2$ of 1 km . 750 m is the same as $3 / 4$ of 1 km .

To change m into km you need to divide the number of m by 1000.
e.g. $2000 \mathrm{~m}=2 \mathrm{~km}$
$4500 \mathrm{~m}=4.5 \mathrm{~km}$

Notice the similarities between weight and length measurements.

Did you know?

The prefix kilo- means 1000. When you have 1000 smaller measures it's the same as 1 "kilo-" measure.

The prefix milli- means 1000. It is different to kilo- because it really means 1 thing split into 1000 smaller pieces.

Fractions	Decimals	Percentages	Fraction of a metre	Centimetres		
$1 / 4$	0.25	25%	$1 / 4$ of a metre	25 cm		
$1 / 2$	0.5	50%	$1 / 2$ of a metre	50 cm		
$3 / 4$	0.75	75%	$3 / 4$ of a metre	75 cm		
$1 / 5$	0.2	20%	$1 / 50$ a metre	20 cm		
$1 / 10$	0.1	10%	$1 / 100$ a metre	10 cm		There are 100 centimetres in a metre.
:---						
There are 10 millimetres in a centimetre.	Did you know.....?					

There are 1000 millimetres in a metre.

LINES

HORIZONTAL

A line 'straight across' (parallel to the Earth's horizon)

A line joining opposite corners in a shape

OBLIQUE a sloping or slanted line

PERPENDICULAR lines that meet or cross at right angles to each other.
Examples:

PARALLEL lines always remain the same distance apart and therefore never meet.
Examples:

The point where lines meet or cross is called the INTERSECTION.

Quadrilaterals

A QUADRILATERAL is a flat shape with FOUR sides. The angles inside all quadrilaterals add up to 360°.

SQUARE

- all four sides are equal in length
- all four angles are right angles
- opposite sides are parallel
- 4 lines of symmetry

- opposite sides are equal in length
- all four angles are right angles
- opposite sides are parallel
- 2 lines of symmetry

RHOMBUS

- all four sides are equal in length
- 2 acute and 2 obtuse angles
- opposite angles are equal
- opposite sides are parallel

2 lines of symmetry

PARALLELOGRAM

opposite sides are equal in length

- 2 acute and 2 obtuse angles
- opposite angles are equal
- opposite sides are parallel
- \quad NO lines of symmetry

More Quadrilaterals

KITE

2 pairs of adjacent sides that are equal in length
one pair of equal opposite angles
no sides are parallel
1 line of symmetry

TRAPEZIUM

- no sides are equal in length
- no equal angles
- one pair of parallel sides
- no lines of symmetry

ISOSCELES TRAPEZIUM

- one pair of sides are equal in length
- two pairs of adjacent angles are equal
- one pair of parallel sides
- one line of symmetry
- NB Adjacent angles are those that are next to each other.

TRIANGLES

A TRIANGLE is a flat shape with THREE sides. The angles inside all triangles add up to 180°.

These are the 4 different types of triangles.

EQUILATERAL

- all three sides are equal
- all angles are 60°
- 3 lines of symmetry

RIGHT-ANGLED

- contains one right angle

This right-angled triangle is also isosceles
 because it has 2 sides the same length and 2 equal angles.

ISOSCELES

- two sides equal in length
- two equal angles
- one line of symmetry

SCALENE

- all three sides are different lengths
- NO equal angles
- NO lines of symmetry

A POLYGON is a flat shape with three or more straight sides. The following is a list of names of polygons and the number of straight sides they have.

PENTAGON ~ 5 sides HEXAGON ~ 6 sides OCTAGON ~ 8 sides

HEPTAGON ~ 7 sides NONAGON ~ 9 sides DECAGON ~ 10 sides

A REGULAR shape has all its sides equal in length and all its angles are equal. A regular shape will have the same number of lines of symmetry as it does sides.

Triangle

Heptagon

Quadrilateral

Octagon

Pentagon

Nonagon

Hexagon

Decagon

SOLID SHAPES

Solid shapes are also called 3-Dimensional or 3-D shapes because they have 3 dimensions - length, width and height.

The following are 3D shapes and their properties

CUBE

- 6 square faces
- 8 vertices (corners)
- 12 edges

Nets of cubes:

CUBOID

- 6 faces (6 rectangles or 4 rectangles and 2 squares)
- 8 vertices (corners)
- 12 edges

Example of a cuboid net:

CYLINDER

- 2 flat faces (circular)
- 1 curved surface
- 2 curved edges, no vertices
- will roll

a cylinder net:

SPHERE

- a 'ball' shape
- one perfectly curved surface
- no vertices or straight edges
- will roll

More 3-D Shapes

CONE

- 1 flat circular face
- 1 curved surface
- 1 curved edge
- 1 vertex

TRIANGULAR PRISM

- 5 faces (3 rectangles and 2 triangles)
- 6 vertices
- 9 straight edges

TRIANGULAR BASED
PYRAMID
or TETRAHEDRON

- 4 faces
- 4 vertices
- 6 straight edges

SQUARE BASED PYRAMID

- 5 faces (4 triangles and 1 square)
-5 vertices
- 8 straight edges

All these solid shapes belong to either the prism or pyramid family. A PRISM keeps its shape all along its length.
A PYRAMID narrows to reach a point at the top.

3-D Shapes - Faces, Edges \& Vertices

The faces are the flat surfaces of the shape.
The edge of a 3-D shape is the name given where 2 sides meet in the shape.

The vertex (vertices is the plural) is where the corners of the shape meet.

These are the properties of shapes you need to know.

Shape	Faces	Edges	Vertices
Cube	6	12	8
Cuboid	6	12	8
Triangular prism	5	9	6
Triangular based pyramid	4	6	4
Square based pyramid	5	8	5
Cylinder	3	2	0
Cone	2	1	1

AREA means the amount of space a flat shape takes up - like the surface of something e.g. your desk or the seat of your chair.

To work out the area of a shape like this, you measure its length and width (breadth) then multiply together these two measurements.
For example: This rectangle measures 8 cm wide and 5 cm long.

$$
\begin{aligned}
& \text { length }=5 \mathrm{~cm} \\
& \text { width }=8 \mathrm{~cm}
\end{aligned}
$$

Area: $5 \times 8=40 \mathrm{~cm}^{2}$

- Don't forget you must ALWAYS write your answer as the measurement squared.
e.g

- Sometimes you are asked to calculate the length of a side given the area and the length of the other side.
To do this, simply reverse the calculation.
$5 \mathrm{~cm} \times \square \mathrm{cm}=20 \mathrm{~cm}^{2}$
$20 \mathrm{~cm}^{2} \div 5 \mathrm{~cm}=4 \mathrm{~cm} .-$ The other side is 4 cm .

Find the area of the figure.

Compound Shapes

To find the area, split the compound shape into smaller shapes. Work out the area of each part and then find the total.

PERIMETER means the distance around a space - like the length of a fence around a field.

This rectangle has 2 sides that are 8cm long and 2 sides that are 5 cm long.

That means its perimeter is $8 \mathrm{~cm}+8 \mathrm{~cm}+5 \mathrm{~cm}+5 \mathrm{~cm}=$ 26 cm

Sometimes you are given the perimeter and the length of one side and you are asked to calculate the area of a rectangle.

e.g. a rectangle has a perimeter of 32 cm . One side is 6 cm long. Calculate the area of the rectangle.

Start by calculating the length of the other sides.

- Opposite sides are the same length, so double the length you already know and subtract it from the length of the perimeter.
- $6 \mathrm{~cm} \times 2=12 \mathrm{~cm}$
- $32 \mathrm{~cm}-12 \mathrm{~cm}=20 \mathrm{~cm}$
- Now divide that number in half and you will have the length of both long and short sides of the rectangle.
- $20 \mathrm{~cm} \div 2=10 \mathrm{~cm}$
- The sides of the rectangle are 6 cm and 10 cm
- Multiply the 2 lengths together to find the area.
- $6 \mathrm{~cm} \times 10 \mathrm{~cm}=60 \mathrm{~cm}^{2}$
- If you know the perimeter of a shape and need to find the area, simply work backwards.

You can calculate the perimeter of a rectilinear shape by adding together the length of each side.
You may need to calculate the length of any sides not given.

VOLUME means the amount of space that is taken up by a container.

To work out the volume of a container, you measure its length, width (breadth) and height, then multiply together these three measurements.

For example: This cuboid measures 3 cm high, 3 cm wide and 6 cm long.

- Don't forget you must ALWAYS write your answer as the measurement cubed.
e.g.

Time Facts

60 seconds $=1$ minute
60 minutes = 1 hour
24 hours = 1 day 7 days = 1 week
14 days $=1$ fortnight
15 minutes $=1 / 4$ of an hour
30 minutes $=1 / 2$ an hour
45 minutes $=3 / 4$ of an hour

52 weeks = 1 year
12 months = 1 year
365 days $=1$ year
366 days $=1$ leap year (once every 4 years)
5 minutes $=1 / 12$ of an hour
5 minutes $=1 / 12$ of $360^{\circ}=30^{\circ}$
5 minutes $=1 / 3$ of a right angle

REMEMBER

On a clock, the short hand is the hour hand. Notice how you can easily see the number to which it is pointing.

The long hand is the minute hand and tells you how many minutes have passed since the time was at o'clock. Notice how the hand is touching the 12 in the picture.

24 Hour Clock

For one full day to pass, the hour hand (the small hand) on a clock must go around the clock face TWICE.

From midnight \longrightarrow to noon and then from noon \longrightarrow to midnight
That's 2 sets of 12 hours which makes 24 hours $=1$ day.
In 24 hour time the names of the times are not repeated - we just keep counting the hours that have passed from midnight until we return to 0 .

MORNING

AFTERNOON

NB: It is very important that you don't forget to use the am or pm when using 12 hour clock to tell the difference between morning and afternoon.

Turning and Angles

clockwise

anti-clockwise

When we think about angles we are really talking about the amount of turning there is between two lines that are joined at a common point. Don't forget clockwise is the direction the hands on a clock move as times passes and anti-clockwise is the opposite.

The angle on a straight line is always 180° - look at the arrow heads in the picture. If you turned one of the lines from the central point, then the arrow head would have to turn through 180° to end up on top of the other one.

This is a right angle. It is a turn of 90°.

Useful facts to remember

$360^{\circ}=1$ full turn or rotation. It is the same as 4 right angles. $270^{\circ}=3 / 4$ of a full turn or rotation. It is the same as 3 right angles. $180^{\circ}=1 / 2$ a full turn or rotation. It is the same as 2 right angles.
180° is known as a straight angle.
$90^{\circ}=1 / 4$ of a full turn or rotation. It is known as a right angle.

Other Types of Angles

ACUTE angles are any angles that are smaller than a right angle. That means any angles less than 90°. Here are some examples of acute angles.

OBTUSE angles are any angles that are greater than a right angle, but smaller than a straight angle. That means any angles larger than 90° but smaller than 180°.
Here are some examples of obtuse angles.

REFLEX angles are those that are greater than a straight angle. That means, more than 180°. Here are some reflex angles.

NB

All acute and obtuse angles have a reflex angle on their outside.

Angles- finding a missing angle

When you need to work out the size of a missing angle, you need to use the information you already know.

REMEMBER

- All the angles inside a triangle add up to 180°
- All the angles inside a quadrilateral add up to 360°
- The angles on a straight line always add up to 180°. It doesn't matter how many angles there are!
e.g. You find the size of angle b by subtracting the other angles from 180: $\quad 45^{\circ}+39^{\circ}+24^{\circ}=108^{\circ}$
$180^{\circ}-108^{\circ}=72^{\circ}$ so b must be 72°

- Diagonally opposite angles are always the same.

The angles above all add to 360°

$$
53^{\circ}+80^{\circ}+140^{\circ}+87^{\circ}=360^{\circ}
$$

Because of this, we can find an unknown angle.

Example: What is angle "c"?

To find angle \mathbf{c} we take the sum of the known angles and subtract that from 360°

$$
\begin{aligned}
\text { Sum of known angles } & =110^{\circ}+75^{\circ}+50^{\circ}+63^{\circ} \\
& =298^{\circ}
\end{aligned}
$$

$$
\text { Angle } \mathbf{c}=360^{\circ}-298^{\circ}
$$

$$
=62^{\circ}
$$

North

Algebra

Sometimes you will see a number puzzle that looks very tricky.
e.g.

$$
\begin{aligned}
& a=6 \\
& 3 a+b=c
\end{aligned}
$$

$$
b=3
$$

Find the value of c.

The work you may need to do is very similar to work that you did in Key Stage 1.
e.g.

$$
\begin{aligned}
& 4 \times 5=\square \text { or } \\
& 2+\square=10 \text { or } \\
& \square \times 4=12
\end{aligned}
$$

The only real difference is that the box \square has been replaced by a number.
e.g.

$$
4 \times 5=a
$$

In this example, you can easily see $\mathrm{a}=20$
Look back at the question at the top of the page.

$$
3 a+b=c
$$

You know that $b=3$ so you can rewrite the sum $a s: 3 a+3=c$
3a really means (3 sets of a) or (3 multiplied by a.)
If a is 6 then 3 a must be $3 \times 6=18$
Now you can rewrite the sum as $18+3=c$ $18+3=21$ so c must be 21 .

Don't forget, in algebra the multiply sign is not used so if you see a number immediately before a letter then you need to multiply.
The division sign \div is also not used. $\mathrm{b} \div 2$ would be shown as $\mathrm{b} / 2$.

Remember

> 2a means 2 times a ab means a times b
> a/2 means a divided by 2
> a/b means a divided by b

